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Nov. 4, 2011 
 
 
The following report is the summary and culmination of three years of 
research on Gas Detection at Ben-Gurion University of the Negev from 
2008 to 2011. 
The basic data consisted of hyperspectral cubes taken of the Haifa 
Refinery with the TELOPS sensor, and DIRSIG simulations provided by 
the Rochester Institute of Technology.  The spectral information 
consisted of LWIR (Long Wave Infrared) spectra from 8-12 microns. 
The research can be summarized as falling into two basic areas.  In the 
first, we experimented with real gas data determining our ability to detect 
the parameters of the CO2 and SO2 present in the image.  These gases 
were chosen because, without any unmixing of the spectra, they were 
clearly visible in pixels immediately adjacent to the top of the stacks.  
Our research emphasized determining the physical extent of the CO2 and 
SO2 cloud and separating the temperature and the concentration effects.  
This work has been summarized in the attached paper by L. Sagiv et al. 
In the second area of research, we extended an RIT step-wise regression 
algorithm for taking pixels of mixed gases in our datasets and separating 
them into gases defined by a spectral library.  The initial RIT algorithm 
had only been used to find single gases in known areas of the image.  We 
extended this work to include multiple gases mixed together and to 
determine which pixels had or didn't have gases at all.  We determined 
that the initial algorithm was not adequate, and that a "shift" algorithm 
forcing a gas signature to fit a particular signature was necessary.  This 
was applied to both the real and synthetic imagery that we had available.  
This work has been summarized in the attached paper by D.N. Rotman et 
al. 
Innovative algorithms have been developed to determine the following: 

1.  We have shown an iterative process to determine the furthest 
extent of a gas cloud once an initial limited number of pixels have 
been identified with this gas. 

2. We have separated the temperature and concentration effects in our 
imagery by developing a model to explain the difference in 
temperature dependence of the CO2 and SO2 gas signatures. 
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3. We have shown how to avoid false identifications of the gases 

using the RIT algorithm by "toughening" the criteria for 
determining a gas is present.  This is done by a fitting algorithm of 
the laboratory signature to the actual data with is performed after 
the stepwise regression algorithm 

4.  We have considered explicitly the possibility that if two or more 
gases have been detected in a pixel that these gases may be easily 
confused one for another.  Higher thresholds are applied for the 
joint detection of "similar" gases. 

While not directly being funded by this project, we have been looking 
into atmospheric correction of the gas signatures.  This work will be 
passed on to AFRL when it is completed. 
The two attached papers summarize this research.  We thank EOARD and 
AFRL for the opportunity to do this research. 
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ABSTRACT 
 
In this paper, we present the development of an algorithm for the detection, 
identification and relative quantification of effluent gases emitted from an  industrial 
plume stacks using an LWIR hyperspectral remote sensing system.  The technique 
consists of the localization of critical wavelengths in the spectral signatures and their 
integration into an algorithm for the detection of high concentrated gas pixels in the 
image cube using a correlation coefficient metric.  Further mapping of low 
concentrated pixels is executed by an iterative Matched Filter (MF) method. Of 
crucial importance is our ability to separate those pixels which have been 
contaminated by the gas from those which have not (or when the concentration is 
lower than the threshold) when evaluating the statistics of the background. Following 
the mapping of pixels with gas in the image cube, a least squares method is applied to 
derive the gas concentration.   We successfully separate temperature and 
concentration effects from each other. The algorithm was tested on data cubes 
acquired in the bay of Haifa with chimneys emitting SO2 and CO2 gases.  The images 
were acquired from distances of 400 and 1700 meters; good results were obtained. 
 
Index Terms – Hyperspectral, Gas, Detection, Long Wave Infrared 
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I. Introduction:   
 

Environmental problems stemming from the pollution emitted by industrial 
effluent gas stacks are common to all countries since the 17th century when the 
first industrial chimneys were built.  Flue stacks are vertical pipes, chimneys, 
through which combustion product gases called flue gases are exhausted to the 
outside air (Douet 1988). Atmospheric models are required to simulate the 
dispersion of pollutants from such stacks and few technologies are available to 
monitor these pollutants.  The advent of multispectral and hyperspectral sensors 
lead to the ability to obtain three-dimensional data for many scenarios:  subpixel 
point target detection, multi-pixel anomaly detection and large scale gas detection 
(Shaw & Burke 2003). For each of these applications, there is a tendency to 
believe that "more is better":   a larger number of wavelengths will provide better 
results than a smaller number.  Some researchers will add the caveat that since the 
Signal to Noise Ratio (SNR) goes down for each channel as the available 
bandwidth is split into more and more partitioned bands, there is an optimum 
number of bands that should be used.  However, even if the SNR is not decreased, 
there is reason to believe that the addition of too many bands may itself decrease 
performance. 
The gas detection project we are working on presently has begun by concentrating 
on this problem:  determining how many and which bands are the best 
wavelengths for detecting the presence of a gas.    Effluent gases such as those 
associated with industrial activity are well characterized by their LWIR absorption 
features (Czerwinski et al., 2005). We present results on two datacubes of power 
plant smoke stacks taken by the FIRST sensor in two ranges – 400 and 1700m 
away (Farley et al., 2006).  We will show that we can well identify the two major 
gas signatures in the stack plume by focusing on the wavelengths for which the 
gas signature is maximum and minimum. 

 
The initial mapping enables the definition of a new reference signature for a 

wider detection of the gas in the image.  This signature is estimated from the 
actual signatures in the cube itself; the covariance matrix of the background is 
determined iteratively by eliminating pixels which have been contaminated by the 
gas signatures.  This is highly significant since Theiler et al. (2006) have shown 
that pixels ostensibly from the background but containing gas content can 
potentially affect the evaluation of the statistics of the background.  The target 
signature is integrated into a Matched filter (MF) which provides wider detection 
coverage. The identified pixels gas content can then be quantified by a least-
squares algorithm which curve fits the identified gas spectral signatures to the 
experimentally measured pixels.  A new technique is developed which allows for 
the calculation of the temperature and  concentration separately. 

The paper is organized as follows:  in Section II, we describe the basic 
experimental set up and the initial identification of the emitted gases.  The spatial 
extent of the gases is explored in Section III; the relative quantitative evaluation of 
the concentration of the gases is given in Section IV. The temperature and 
concentration effects are separated in Section V.  We summarize the results in 
Section VI. 
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II. Gas Detection: Single datacube of a smokestack:   

 

a. Goal: 
 

We are given a set of datacubes in the Long Wave Infrared (LWIR) (Fig.1).  
The data cubes were attained during an experiment at the bay of Haifa, Israel, using 
the "FIRST" spectral imager.  The sensor was developed by Telops; it's a LWIR 
hyperspectral imager based on FTIR technology (Farley et al., 2006).  The FIRST 
provides datacubes of up to 320x250 pixels at 0.35 mrad spatial resolution over the 8-
12 micron spectral range and with spectral resolutions of up to 0.25 cm-1.  In the 
experiment, the FIRST imaged chimneys from distances of 400m and 1700 m away at 
a rate of 1 Hz per datacube.  

 

 
 
Fig. 1.  Sample frame of gases emitted from the smoke stack 

 
 

The gases being emitted were unknown.  However, a reasonable guess from 
known laboratory signals implies that CO2 and SO2 were probably major components. 
The following graphs show the laboratory signatures for CO2 (Fig. 2), SO2 (Fig. 3), 
and a fit to an actual pixel signature taken from the data (Fig. 4).  

 
 
Fig. 2:  The  curves represents laboratory signatures of CO2 at various temperatures.  
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Fig. 3:  The  curves represent a laboratory signature of SO2 at various temperatures. 
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Fig. 4:  An actual gas pixel taken from the datacube (bold curve).  Also shown is a fit 
to the weighted sums of the CO2 and SO2 laboratory signatures as will be described 
later in the text (dashed curve).  Note that all the peaks in the laboratory curves seem 
to correspond to peaks in the actual data.  The converse is, however, not true; 
additional unexplained peaks can be found in the real data. 
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To mathematically determine if a particular type of gas is present in the experimental 
signature, we decided to correlate the laboratory signature with the measured results, 
calcuting the standard correlation coefficient between the two vectors.  We note that 
the spectra of the two gases are quite dissimilar and do not overlap.  Thus, we can 
expect to be able to identify both of them easily.  We take the maxima and minima 
points of the theoretical gas signal; we will use the wavelengths of these points and 
the wavelengths between these points that have the average values of the maxima and 
the minima (Fig. 5).  By limiting which wavelengths are used in the correlation, we 
avoid interactions with extraneous peaks and gases that may be present in the 
signature.   
 
 

 
 
Fig. 5: Wavelength selection for the correlation fit of the suspected data to the library 
signatures 
 

III. Spatial determination of the gas cloud: 
a. Initial estimate of gas cloud extent 
 

We can now take these signatures and test the cubes which we have available for 
target detection.  The cubes were taken from two distances:  400 meters and 1,700 
meters.  Multiple cubes at each distance were taken; the following results were 
substantiated over all the cubes. 
 
The left sides of Figs. 6  and 7 shows the correlation coefficients of the two gases with 
the output of the smoke stacks.  On the right, we show a binary image indicating 
where the coefficients exceed a 0.8 threshold. 
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Fig. 6: Correlation map for gases from the smokestack at 400 meter distance. 
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Fig. 7: Correlation Map for gases from the smokestack at 1700 meter distances. 
 
When the same procedure was applied to the images with the spectra of the other 
gases, no detections were obtained. 
 

b. Extension of method to real (non laboratory) signatures: 
 
While these results are rather exciting, there is still a certain weakness to the results.  
We have to rely on a laboratory signature for matching the gas.  This signature could  
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be altered by either sensor or atmospheric anomalies (Kopeika 1998, Manolakis & 
Shaw 2002, Figov 2007); in fact, the atmosphere will almost definitely have a 
dominant effect. 
 
If we have already determined which pixels definitely have the gas we are interested 
in, we should be able to use the data itself iteratively to determine an even better 
signature for the gas.  The initial mapping (of highly concentrated gas pixels) enables 
the definition of a new reference signature which is more suitable for a wider 
detection of the gas in the image comparable to the initial spectral signature. 
    
The following procedure was applied: 
 

1. The laboratory signature was correlated with each pixel; the image was then 
segmented with a high correlation coefficient threshold to detect pixels that 
definitely had the gas. 

2. The pixels thus determined were spatially filtered with a median filter to only 
choose genuine gas pixels.  (Fig. 8) 

3. Determining a new signature:  We average the signatures of those pixels 
which have been determined to be high concentrations of gas. 

4. This signal is then used in a matched filter to once again attempt to find low 
concentration pixels.  The equation for the matched filter would be: 
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T
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C

C
     (1) 

 
 
where 
 
r -  is the measured pixel 
s -  is the signal of a pixel with gas 
 -  is the signal of a pixel without gas 

1
C -.  is the inverse covariance matrix of the background.  
 
For the wavelengths to be chosen here, we defined and used the Maximum Spectral 
Information Criteria.  This consists of examining the spectra of the gas we were 
interested in, and only using those wavelengths which were directly related.  This was 
done by integrating the gas spectrum over the entire wavelength band being 
measured; the wavelengths which contribute between a lower minimum (0.05) and a 
higher maximum (0.95) are used.  (See Figs. 9a and 9b). 
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Fig. 8: Median filtering the detection mapy for SO2. 
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Fig. 9a:  Dashed curve is the integral of the spectrum of SO2 (and referred to as the 
MSI spectral signature)..  The wavelengths between 0.05 and 0.95 (as measured on 
the MSI function) will be used. 
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Fig. 9b:  Dashed curve is the integral of the spectra of CO2 (and referred to as the MSI 
spectral signature).  The wavelengths between 0.05 and 0.95 (as measured on the MSI 
function) will be used. 
 
As stated above, the signal in Equation 1 will be found by thresholding the image.  
Pixels above the threshold are assumed to be examples of the gas and will be 
averaged to provide the signal statistics.  Similarly, pixels below the threshold will 
represent the background and will be averaged to calculate the background average 
and the background covariance matrix needed in Equation 1.  
The determination of the threshold to separate between the background and the signal 
will be determined by the statistics of the background.  For the rest of this paper, the 
threshold for the gas was calculated as that being two standard deviations about the 
mean of the background. 
 
 
 
 

c. Experimental Results: 
The initial image shows the results from the correlation coefficient (Fig. 10).  The 
matched filter results can be seen in the next image.  The statistics of the background 
can be seen in the third image, while the new estimate of the location of the gas pixels 
is in the fourth image.   
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Fig. 10:  CO2 and SO2 gas pixels:  a) initial estimate based on correlation coefficient, 
b) matched filter result, c) histogram of matched filter result and d) new estimate of 
gas pixel location 
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We note that the concept of using the actual data iteratively to find the actual 
signature of the data for the next analysis is critical.  In the next figure (Fig. 11), we 
show what one obtains if one had continued to use the laboratory signal without using 
the actual data (thereby ignoring atmospheric and sensor effects). 
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Figs. 11:   Same data  as in Fig. 10 with the exception that CO2 and SO2 library 
signals were used to model the expected gas signature, rather than the experimental 
data. 
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The results in Fig. 11, in particular for CO2, seem to be particularly poor. 
 

Our method when applied iteratively several times seems to converge on a 
particularly good result (Fig. 12). 
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Fig. 12. Convergence of our method after 9 iterations for the detection of SO2. 
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For the sake of completeness, the original images and the final results for CO2 and 
SO2 for 400 and 1700 meters are shown in Figs. 13-16. 
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Fig. 13:  SO2  - 400 meters 
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Fig. 14:  CO2 – 400 meters 
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Fig. 15:  SO2 – 400 meters 
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Fig. 16 – CO2  - 1700 meters. 
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IV. Proportional Concentrations of Gases: 

 

Now that we have identified the gases present and their extent, it is interesting to 
consider their relative concentrations.  In order to do this calculation, we must assume 
that the temperature difference between the background and the gas is spatially a 
constant; in this section we make such an assumption.  Thus, the primary difference in 
the spectra is due to different concentration.    In Section V, we will consider how to 
use the temperature dependence of the gas absorption to separate the two effects 
(concentration and temperature) one from the other 
 
Let us consider a pixel which consists of the gas at a certain temperature and 
concentration with the background of the sky.  Since the sky in the infrared will be 
much colder than the gas, we can assume that the signature received will be the 
signature of the sky plus a component due to the gas. 
 
We can calculate the ratio of the power due to the two gases compared to the power 
due to the background.  This would be done as follows: 
 
Let M be a matrix whose columns consist of the laboratory signatures of the gases. 
 

1 Ns s

 
 

  
 
 

M      (2) 

 
Each pixel can now be projected into this subspace via Equation 3: 
 

 
1

T T r


 M M M      (3) 
 
The vector alpha represents the fractions of the gas vectors (in M) which have been 
found.    The vector in this subspace can be decomposed into the specific gas 
signatures representing the gases by Malpha; the component of the original vector 
orthogonal to this space is related to the background and the noise.   Two interesting 
parameters can now be determined for each pixel: the first is the coefficients of each 
of the gases, the second is the ratio of the power of the combined gas signatures to the 
original pixel. The fit we showed in Fig.4 was obtained by this method. 
 
 
The ratios of the power of the gases to the overall power of the pixels is shown in 
Figs. 17 and 18 for 400  and 1700 meters, respectively. 
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Fig.17:  Energy ratio of the power associated with the two gases to the overall power 
for 400 meters 
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Fig. 18:  Energy ratio of the power associated with the two gases to the overall power 
for 400 meters. 
 
 
The actual coefficients for CO2  and SO2  for 400 and 1700 meter range can be seen in 
Figs. 19-22. 
 
 
. 
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Fig. 19:  SO2  - 400 meters. 
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Fig. 20:  CO2 – 400 meters 
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Fig. 21: SO2 – 1700 meters 
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Fig. 22:  CO2 – 1700 meters. 
 
 
 
 
 
 

V. Quantifying concentration and temperature separately:\ 
a. Method 

 
It is known that the observed signature will be a function of the product of the 
concentration and the temperature.  In other words, assuming a linear form of Beer's 
law, a doubling of the concentration will produce the same resultant spectral signature 
as a doubling of the plume temperature.    
 
To avoid this problem, we note the following:  the temperature observed at any pixel, 
corresponding to a particular physical location, is the same for all the chemical 
species located there.   However, very often the temperature dependence of one of the 
gases chemical absorption can be very different from other species' temperature 
dependencies.  Under certain assumptions, we can invert for the temperature. 
 
We will assume that in our gases the temperature dependence of the SO2 and CO2 
transitions are known.    The steps necessary to then derive the temperature are as 
follows: 
 

1. Take the pixel signature and normalize it: 
i. One must remove the background signature.  This in general 

can be done by defining the background as a typical non-
gaseous sky pixel and subtracting it from the inspected pixel.   

ii. One should remove any residual DC effects by finding the 
wavelength which in general has the lowest value (and thus is 
most likely to be unaffected by the gas) and subtracting its 
value from all the other wavelengths. 

iii. One should find one of the predetermined wavelength peaks of 
the signal and divide all the values in the signal by it.  When 
this is performed on all the pixels,  the pixels will now be 
normalized with zero at the lowest wavelength and one at one 
of the highest peaks. 
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Let us assume that the gases do not separate in the atmosphere; in other words, the 
ratio of the two concentration of the two gases is constant in all pixels.  In that case, 
since we have normalized the curves, the effect of different concentrations has been 
eliminated. Therefore, 
 

2. Measure the ratio of the two species. 
a. This can actually be done in several ways.  One can simply pick the 

peak values of each of the two species and take the ratio.  
Alternatively, one can integrate over some range of wavelengths for 
each of the species and take the ratio of these values. 

 
 If the temperature dependence of each species was identical, the signatures would be 
identical (within the limits of the noise) and the ratios would be constant.  Changes in 
the ratios must be due to the different temperatures at which each pixel finds itself and 
the chemical response to these differences. 
 

3. Assume a temperature for some particular pixel. 
a. Although we can see the change in the above metric, we do not know 

what the actual concentration ratio of the two gases is.  Thus, one peak 
may be much larger than the second either because the ratio of the 
gases is much larger or because the temperature is much more 
appropriate for one gas relative to the second.  Some physical estimate 
of the temperature of at least one pixel must be made.   

 
4. Calculate the temperatures for the remaining pixels 

a. The temperature of the remaining pixels can now be calculated relative 
to the value assumed for the first "known"  pixel in Step 3. 

 
5. Calculate concentrations. 

a. Given the temperature at each point, we can calculate the relative 
concentration spatially of each gas component.  Due to the 
assumptions preceding Step 2, the distributions will be identical. 

b. Note that if the absolute strength of the transitions are known and if the 
spatial extent of the gas in the third dimension perpendicular to the 
plane of the image is known, then absolute concentrations can be 
calculated. 

 
b. Experimental Results: 

 
In Figs. 2 and 3 in the beginning of the paper, we presented the laboratory absorption 
spectra for CO2 and SO2 respectively, as a function of temperature and wavelength for 
constant concentration (EPA data is given at  
http://www.epa.gov/ttn/emc/ftir/aedcdat1.html ).   The SO2 spectra noticeably 
decrease as a function of increasing temperature, while the CO2 spectra correlate 
positively with increasing temperature.  
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The situation we postulated in the previous sections exists; there is a dramatic 
temperature difference in behavior for the absorption between two of the gaseous 
components  in the gas. 
 
After normalizing the peaks to eliminate concentration effects, as described above, we 
must choose a feature which has a strong temperature dependence.  We will base 
ourselves on the ratio of the first SO2 peak at roughly 8.5 micron to the second CO2 
peak at 9.7 micron.   
 
The temperature dependence of these peaks based on the laboratory measurements 
can be seen in Fig. 23 
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Fig. 23:  Ratio of peaks after normalization (the first two at 300 degrees, the last two 
at 500 degrees), as a function of temperature. 
 
The pixel with the highest temperature-concentration product in Fig. 17 was assigned 
the temperature of 500 degrees and was the basis for our normalization.    Fig. 24 
shows three pixels which have been normalized as discussed above. The prominent 
SO2 peaks at the coldest temperatures on the left of the graph and the CO2 peaks at the 
right of the graph, notable at high temperatures, can be seen. 
 
 

 
Fig. 24:  Note that the blue curve represents a pixel far from the stack, the red curve is 
close to the stack and the green curve is intermediate between the two.  Normalization 
occurs at bands 8 and 95. 
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Fig. 25 shows the temperature prediction results on the pixels associated with the gas 
emission.  The overall success of the method can be seen by the consistency of the 
data.  Although we have normalized the data at two bands, the shape and intensity of 
the peaks allows us to determine the temperature.  Note that the temperature appears 
to be hottest slightly above the stack; it gets consistently cooler as we go downwind.   
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 25:  Temperature distribution for the gas cloud. 
 
Fig. 26a: 
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Fig. 26b: 
 
 
Figs. 26 a and b:  Concentration maps for a) CO2  and b) SO2. 
 
Fig. 26 shows the gas spatial distribution once the temperature has been accounted 
for.  It shows similarities to the temperature distribution as would be expected:  as the 
gas flows away from the stack it decreases both in temperature and concentration.  
Nevertheless, there are some subtle differences.  The highest concentration is not 
immediately above the stack, but rather a slight distance above it.  This can be noted 
in previously published theoretical models (Halitsky, 1968). (Figs. 27 and 28). 
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Fig. 27:   Theoretical gas temperature distribution. [Halitsky, 1968] 
 
 
 
 

 
 
 
Fig. 28 Theoretical gas distribution [Halitsky, 1968]. 
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VI. Conclusions 

 
The research here has been divided into three parts.  We started with gases being 
emitted from a smokestack.  Not knowing what gasses were being emitted, we 
developed a method to correlate known laboratory spectra with the emitted spectra.  
We found the two main components: carbon dioxide and sulfur dioxide.  Our method 
for doing this involved the careful selection of critical wavelengths for the analysis. 
 
While this enabled us to find the main concentrations of gas, we wanted to extend the 
physical extent of the cloud.  We did this by shifting from the laboratory signatures to 
the actual averaged real data signatures of the gas cloud and then performing a 
matched filter.  The image was then thresholded on the basis of the background 
statistics. This procedure was performed iteratively until a stable division of 
background/gas was achieved. 
 
The resulting signatures can be separated by energy into that which is due to the gases 
and that which due to the background; the percentages of each gas can be calculated.  
Finally, we successfully separated the temperature from the gas by recognizing the 
different temperature dependences of the gas components. 
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ABSTRACT   

An iterative algorithm which identifies the presence of different gases using a 
hyperspectral image was developed and tested. The algorithm uses the “stepwise 
regression” method combined with new methods of detection and identification. This 
algorithm begins with a library of gas signatures; an initial fit is done with all the 
gases. The algorithm then eliminates those signatures which do not noticeably 
improve the fit to the measured signature. We then consider which of the gases that 
were detected have a high probability of being mistaken with the detection of other 
gases that are also present in the scene.  A necessary post-processing step eliminates 
gases which do not uniquely fit the signature of the examined pixel, with an emphasis 
on eliminating gases which may have been misidentified.   

 

Keywords: gas detection, stepwise regression, longwave infrared 
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1. INTRODUCTION  

Hyperspectral image processing is based on the fact that each material has its own 
unique "spectral signature".  In general, any pixel of a hyperspectral image will 
consist of a mix of hyperspectral signatures.  Linear unmixing techniques are 
designed to separate these pixels into their constituents. 

 
This procedure is even more complicated when applied to gas detection.  In any one 
pixel of an image of a gas plume, we may expect to see the emission (or absorption) 
signatures of several gases, background behind the plume emission, and atmospheric 
absorption.  Thus, the unmixing will have a particularly complicated algorithm to 
properly identify and quantify the gases present. [1] 

 
The spectral signatures of many gases have absorption and emission lines in the 
LWIR (Long Wave InfraRed) and MWIR (Medium Wave InfraRed) spectral regions, 
i.e.,  8-12[m] and 3-5[m], which enable gas detection in the analysis of 
hyperspectral cubes containing those wavelengths. Due to the increasing need in 
means to monitor industrial polluting, a method of quickly and efficiently detecting 
gases which are emitted into the atmosphere by industrial plants is useful. [2] 

 
In this paper, we develop a stepwise regression method to detect gases in a plume; our 
initial report of the method may be found in Ref. 3.  We augment this previous report 
with a new method for the detection of multiple gases which takes into account that 
gases may often be mistaken one for another.  Therefore, after our initial phase in 
which we determine which gases are apparently present, we examine the pairs of 
gases present, considering which gas could have been confused as another.  The 
threshold for positive detection is raised depending on how similar two gases are.  
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2. ALGORITHM DEVELOPMENT  

 
2.1 The implementation of the stepwise regression method. [1],[3] 

A regression approach for gas identification, called stepwise regression, was 
suggested in Ref. [1]. Our implementation is described as follows: 

Each pixel can be described as 
 

                                                                                                                                  
               (1) 

 
where p is the pixel's values throughout the different wavelengths, M is a matrix 
containing the signatures of all the gases potentially present in p,  is the gases  
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signature's abundances, and n represent noise and clutter, i.e., signatures which are 
present in the pixel and aren’t a known gas. 

The stepwise regression algorithm receives a matrix M which contains the signatures 
of all the gases to be checked for their presence. It then calculates  which is an 
estimation of : 
 

                                                            (2) 
 
The algorithm next removes sequentially each of the gas signatures from M and 
calculates the corresponding  and the "fit error test" E. 

 
                                                                                   (3) 

 
 
N is the number of channels in the cube and R is the number of gases which are in the 
databank but have been removed and are not being used in M. The "fit error test" is 
the average energy (per channel) of the difference between the revaluated pixel and 
the actual pixel, with a slight penalty for removing the gases from M. The algorithm 
then returns the previously removed gas to M and proceeds to the next one. 

 
After processing all the gases, the algorithm compares all new "fit error tests" caused 
by removing each of the gases to each other and removes permanently the gas whose 
removal has the smallest effect on the "fit error test" This assumes that the relative 
rise in the error is less than a given threshold (0.15 in this experiment). 
 
2.2 Shift fitting method 

Upon examination and comparison of the spectrum of a certain pixel and a particular 
gas, it is often possible for a human to immediately see whether the gas is present or 
not, by comparing the local maximum and minimum points of the two vectors. A 
method of imitating this process is described below. For each gas a "signature's 
highlights" vector is created.  This is a vector containing only the local maxima and 
minima points of the signature minus the total average of those points.  The rest of the 
channels contain zero values. The average of those "signature's highlights" is 0. 

A "picks fit" value for each pixel-gas combination is calculated as: 
 

                                                                                                                                                                 
(4) 
 
Where h is the "signature's highlights" vector of the investigated gas. Originally, the 
wavelengths of the gas vector are aligned with the wavelengths of the investigated 
pixel (as is logical). We next shift the "signature's highlights" vector circularly one 
channel at a time. For each shift a new "picks fit" is calculated, producing a vector , 
representing the "picks fit" values for the different shifts. The larger the "picks fit"  
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value at 0 in comparison to the rest of the shifts, the more likely the tested gas is 
present. To quantify this, a new metric presence likelihood test ("PLT") is calculated: 
 

                                                                                (5) 
 

where std is the standard deviation.  The algorithm uses this test for all of the pixels 
and for each of the gases tested and chooses the gases where PLT1>1.4 as present. 
The algorithm then applies another technique based on the same principle, using the 
stepwise regression's results. It repeats the exact same process as the method 
described above, with one difference: Instead of using the pixel's spectrum vector, it 
uses a vector  which is the fit error (produced by the stepwise regression)+tested gas 
component in the fit: 
 

                                                                                                                                             
(6) 
 
 where j is the index of the tested gas. 

 
This method is meant to magnify the effect of the presence/non presence of the tested 
gas and eliminate effects of other gases maximum and minimum points in the pixel. 
The algorithm uses this test for all of the pixels, but only for the gases which were 
identified by the stepwise regression step in each pixel. It identifies as present the 
gases where PLT2>0.65. After applying both of these methods, it combines their 
results (a simple AND operator). 
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3. INITIAL RESULTS 

3.1 First Data-Set 

Initially, the above algorithm was applied to a natural scene:  The algorithm was 
tested on a hyperspectral cube taken by a TELOP "F.I.R.S.T" camera. The picture was 
acquired from the chimneys of Haifa's refineries facilities. The cube contains 225 
channels in wavelengths from 7.5μm to 12μm. According to the factory's published 
data, CO2 and SO2 are emitted in high quantity.  Figure 1 shows an optical and 
infrared (shown in false color) image of the scene. 

 

 
 
 
 
The algorithm was activated with a signatures bank of 11 gases: BENZENE, CH4, 
CO2, F12, F114, H2O, N2O, NH3, O3, SO2, NO2. Their spectra can be seen in Figure 2.   
 

 

 
Figure 2. Gas spectra library 

 
Figure 1. On left, Haifa chimneys. On right, close-up of images 

at 8.6 microns 
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When looking at the spectra of a pixel taken from the center of the gas emitted from 
the stack, the “human eye” can recognize the presence of CO2, O3 and SO2 gases 
immediately, as seen in Figure 3.  (The ozone may be seen either in the plume or in 
the background atmosphere; throughout this paper, we will consider ozone to be 
neither a detection or a false alarm). 
 

 
 
 
 
 
The basic algorithm as described in Section II.1 produces a large number of false 
alarms. The results can be seen in Figure 4. 
 

 
 
 
 
 
 
 

 
Figure 4. Initial results: gases detected after running stepwise regression 

 
 

Figure 3. Pixel spectra and gases easily identified 
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After we run the shift algorithm, most of the false detections are removed including 
the detection of gases in the stack, as seen in Figure 5. 
 

 
 
As we can see, the algorithm was considerably improved. In the gas cloud, we detect 
SO2 and CO2, while O3 is detected in the atmosphere. Trace amounts of F114 and 
Benzene were found; from their spatial distributions, we believe that these detections 
are false alarms. 
The PLT thresholds previously mentioned in Section II.2 of PLT1>1.4 and 
PLT2>0.65 were reached by trial and error; these were the best results that could be 
obtained, and the problem of the false alarms of F114 and Benzene was at this stage 
unsolvable. We will show that after the new post-processing step we implemented, 
these false alarms are fixed. 

 
3.2 Second Data-Set 

We continue by applying the above algorithm to a DIRSIG image [1].  The particular 
image we chose was a horizontal image with a gas plume clearly visible (Fig. 6).  This 
image is shown in false color as imaged at 9 microns.  The plume itself consists of 
SO2 gas; a standard atmosphere was assumed. 
 

 
Figure 5. Gasses detected after shift algorithm was applied  Note that Benzene has 

a few false detections. 
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With the same gas signature bank as before, we can see again that the basic algorithm 
described in Section 2 produces a large number of false alarms (Fig. 7). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. Initial results after applying shift algorithm 

 
 

Figure 6b. Area of interest 

 
 

Figure 6a. DIRSIG Image in false color plotted at 9 
microns 
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When trying to implement the shift algorithm we encountered the following problem: 
there were no PLT1 or PLT2 values which could be chosen which would leave the 
SO2 gas in and yet eliminate all the others. The best results which could be reached 
are shown in Figure 8. 
 
 

 
 

We are left with some false alarms. F114 is detected where the gas cloud is strongest, 
and F12 is being detected in a few pixels in the stack.  

 
We noted that the PLT values derived were sometimes much higher for some gases 
compared to others. Apparently, what we need is not an absolute PLT score, but a 
relative gas-dependent threshold.  In addition, some gases can be mistaken as other 
gases if their spectra are similar. 

 
In order to eliminate these false detections we developed the following algorithm 
presented in Section 4. 

 

 

 
 

Figure 8. Initial results: DIRSIG data after running stepwise regression 
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4. COMPARING SIMILAR GASES 

One of the problems which we may have is that many gases are similar to one 
another.  Therefore, it behooves us to consider how we can avoid having gases 
interfere with one another. 

 
Let us consider the results of shift when one "pure" gas is run against another pure 
gas.  The shift algorithm was run on a “cube” which consisted of 11 pixels – the 
pixels being the gas signatures themselves.  The row is the gas which the pixel looks 
like; the column is the gas which we are trying to detect in the pixel.  We include the 
case where a gas is run against itself.  The shift results are shown in Table 1. 

 

 
     Table 1. The shift results received when comparing gas spectra. 
 

 
 
 
 
A graphic visualization of this matrix is given in Figure 9. 
 

 
 
Figure 9. Graphic visualization of Table 1 
 
 
We note two facts concerning this matrix: 

1.  There is no single number which appears appropriate towards setting a threshold. 
For example, the shift score NH3 gets on a pixel containing itself is a factor of 3 
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higher than other gases.  NH3 has evidently a unique signature which will be hard to 
imitate. 

2. For a pixel with O3, Benzene gets a score of 3.2 while O3 itself gets only slightly 
higher, i.e. 3.4. Apparently, one gas can be confused with another if they are similar 
enough. 

 

We suggest the following: for the gases tested here, we should always give the highest 
shift score to a pixel which looks like itself; to check if a gas is there we will compare 
the score it got to the score it gets for a pixel which looks like itself. The graphic 
interpretation for this is that the highest score in any column is the diagonal; we will 
compare our result to the value obtained on the diagonal.  

 

In addition, when checking for the presence of gasses, the highest score received is 
almost always by the actual gas which is present.  (Any deviation from this is due to 
the preprocessing we do of the gas pixel (see N2O/H2O); this subject is under 
investigation). Although H2O may get a very high score for itself compared to the 
score CO2 got for itself, it won’t get a higher score on a pixel which looks like CO2 
than the gas CO2 itself got. The graphic interpretation for this is that the highest score 
in any row is the diagonal. 
 

Thus, for our PLT measurement in our shift algorithm, we will compare the shift 
score which we get to the shift score that the gas would get for a pixel which looks 
like itself. 

 

To fix the problem of gases resembling one another we propose the following: for any 
two gases in the fit after the initial basic result (including the first Shift algorithm), we 
will check the above table to see if they could have been confused one for the other 
(that gas A gets a high shift score for a pixel which looks like gas B). If they could, 
then unless the gasses got extremely high shift scores (in which case we will be forced 
to say both gases are present) we will choose the one which got a higher shift score 
(compared to itself). 

 

The algorithm: 

0.  Run the initial step-wise algorithm and determine which gases are possibly present 
in the pixel. 

1. Run the Shift algorithm and create shift results for all gases found. 

2. For each gas found for every pixel, check the shift result; if it is not 30% of the 
shift result that the gas would get on a pixel which looks like itself (the diagonal in the 
above table), remove the gas from our fit. 

3.  For every pair of gases found, check the above table to see if these are a 
problematic pair. If gas A fitted on a pixel which looks like gas B gets a shift result of 
at least 30% compared to B fitted on B AND vice versa then: 
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3.a. If both shift scores for the gases were at least 60% of the score the gas got for 
itself, then keep both gases in the fit. 

3.b. Otherwise, remove the gas whose ratio: (shift score gas obtained on pixel)/(shift 
score gas gets for itself) is lower. 

4. If only gas A gets high results for B but not the other way around, then the fact that 
we found both points strongly to the fact that it was only gas A. And so, unless B got 
a score of 60% compared to itself, remove gas B out of the fit. 

 

 

 

 

 
5. FINAL RESULTS: 

 
After implementing the above algorithm on both data sets we received for the TELOP 
cube the results shown in Fig. 10, and the results for the DIRSIG cube in Figure 11. 
 
 

 
 
 
 
 
 

 
 

Figure 10. Final results for TELOP cube after gas elimination process 
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6. CONCLUSIONS: 

 
An extension of our algorithm for the stepwise detection of gases is considered.  In 
particular, we tackle the problem of gases which resemble other gases, i.e., often 
when gases a and b are detected in a gas cloud, only a is present, while b simply looks 
like a.  In our new algorithm, a prior analysis shows which gases can be confused with 
each other; thresholds are set to avoid multiple gas identifications of a single gas. 

Obviously, the establishment of accurate thresholds needs testing on multiple datasets.  
Future work will be dedicated to expanding on additional experimental results. 
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Figure 11. Final results for DIRSIG 
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